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Steady, supersonic, dissipative, three-dimensional, axisymmetric flow is con- 
sidered. A system of Burgers-type equations is shown to  govern the flow field. 
In  inviscid regions the Whitham theory gives the limiting form. Dissipative 
effects ultimately engulf the inviscid zone and at sufficiently large distances from 
the body the flow is governed by linear dissipative theory. The flow field is divided 
into zones based on the presence or absence of nonlinearity and dissipation. 
Estimates and criteria which describe the extent of these zones are given. 

1. Introduction 
The results of the present treatment of supersonic axisymmetric flow differ 

in a number of respects from the results of our investigation of two-dimensional 
flow (Chong & Sirovich 1971, hereafter referred to as I). Two of the more striking 
differences are (i) that a t  large distances the picture of distinct dissipative shock 
and inviscid zones fails, dissipation completely invading the wave region; and (ii) 
that at larger distances linear dissipative theory is found to govern the flow. 

I n  our investigation we first demonstrate the breakdown of linear theory. 
The multiple scales method (Cole 1968, p. 79) is then used and results in a system 
of governing equations each resembling the Burgers equation (Burgers 1948). 
I n  fact a transformation reduces the basic equation to a Burgers equation con- 
taining a spatially dependent ' diffusivity '. I n  those regions where inviscid 
effects can be separated, OW results reduce to those of the Whitham theory (Whit- 
ham 1950, 1952, 1956). However, at sufficiently large distances from the body no 
inviscid region exists. 

Dissipation has already been considered in the transonic studies of Ryzhov 
(1965), Ryzhov & Shefter (1964) and Szaniawski (1968). In  these studies simi- 
larity solutions arppear to be physically relevant whereas this is demonstrated 
not to be so in our case. The most important earlier treatment is due to Lighthill 
(1956, especially §9), who, using a different viewpoint and formulation, also 
derived a Burgersequation with a spatially dependent diffusivity. (The diffusivity 
grows with altitude and this lies at the root of the novel results mentioned in the 
first paragraph of this section.) 
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2. Governing equations 
Although we are primarily interested in three-dimensional flows, the two- 

dimensional case is also included. Also, since the notation and normalization are 
the same ibs in I, the reader is asked to  look there for such details. 

We recall that v = (p,  u, v, T) refers to perturbation quantities. The upstream 
supersonic velocity is taken to be in the x direction and the direction perpendic- 
ular to this is denoted by y; u and v denote the velocity perturbations in these 
directions, respectively, while p and T represent the density and temperature 
perturbations, respectively. The governing equations are written as 

where n = 2 or 3 represents the number of dimensions. The matrices A and B 
are given on page 166 of I and (C)ij = SilSj3+/ySii4Sj3. The vector function X 
represents quadratic inviscid terms, Y the linear dissipative terms and 2 the 
remaining terms. 

3. Breakdown of linear theory 
Inviscid theory 

Dissipation will be neglected for the moment. For flow past a thin or slender 
body of thickness ratio E we can formally expand v: 

v = €V1+€2V2+ ... . ( 2 )  

All lengths are now regarded as normalized with respect to the body length L. 
From (1 ) to lowest order the flow is governed by 

VI = 0. 

As is well known, (3) may be reduced to the wave equation. Since we are interested 
in regions well away from the object we solve by a procedure which proves useful 
in systematically generating higher order terms. 

The matrix A is positive definite in supersonic flows and from this it follows 
that there exists a complete set of real bi-orthogonal eigenvectors (13 and {ui) 
and red eigenvalues (hi) such that 

(i = 1,2 ,3 ,4) .  (4 1 1 
AiAli = B1i = hiai, 

d . l j  = 0, i +j, 

The hi, li, and at are given by equations (26)-(28) of I. 
Without loss of generality we can decompose v1 into the four ‘modes’: 

Vl = llgl(x, Y) + l292(X, Y) + l393(X, 9) + 1494(2, Y), (5) 

with g, = ui . vl/ui. 16. On substituting ( 5 )  into (3) and multiplying from the left 
by li, we find that for i = 1 and 2 (corresponding to the wake) the equation de- 
couples completely into 

(6) ag,lax = 0, ag,lax = 0. 
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This leads to the inviscid form of the wake, so that in the wake 

For i = 3 and 4 we get two coupled equations in 9, and g,, which in fact may be 
reduced to the wave equation. Instead of following this approach, we can seek 
the solution outside the wake by writing 

Vl c y-Pjfj(“, Y), Pi+l > Pi, (8)  
j=1 

and letting y 3 co. In  addition we require that this sum be orthogonal to a1 and 
a2 By inserting (8) into (3) we obtain 

(A-+B-)fl 6 a = 0, 
ax ay 

which after the orthogonality condition has been imposed gives 

fl = I3g(7) +14Q(.f), (9) 

where r = y - h3x and .f = y - h4x. Since a wave travelling upstream is physically 
impossible, we have Q = 0 and 

(For convenience, we consider the Mach region only in the upper half-plane in 
two dimensions.) It is clear that each f$ is in fact a function of 7 only, and we now 
put fi = f$(T). As we shall see, this automatically meets the orthogonality con- 
dition also. The equation t o  the next order is then 

fl = I’g(7). (10) 

[ -h3A + B]fi- b1B - (n - 2) C] fl = 0. (11) 

(To obtain this we also need the matching requirement pj+l =pi+ 1.) Multi- 
plying (1 1) from the left by 1* yields the ‘Fredholm ’ condition, 

13.[p1B-(n-2)C]13g = 0, 

which gives p1 = +(n - 2). Solving (11) we find 

where 

is an indefinite integral of g, and h is an unknown function. The latter is deter- 
mined by proceeding to the next order, at which (3) has the form 

[ - h3A + Elf; - b z B  - (n- 2) C] f% = 0. 

Multiplying this from the left by P finally gives 

N 7 )  = ig9-1(7). 

This process may be continued and the expansion for vl found to all orders. 
For n = 2 we have p1  = 0 and the series for v, terminates, so that 

v1 = 13g(4 (14) 
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is exact. For n = 3, the leading term is given by 
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V, = y-+13g(q + o(&. (15) 

We now regard the expansion of v1 as known and return to the solution of the 
inviscid form of (1) under the expansion (2). The second-order equation is 

V, = X(V,), 

in which X is quadratic. The solution v, consists of a homogeneous solution 
of the same form as v, and a particular solution. In  the wave region defined 
by 7 fixed and y large, we have v1 N y-4(n-2)13g(~), so that X = Y-@-~)X,  with 
x, = O(1). 

To find a particular solution of (16) we fist decompose v, into the form 

V, = l1b^1(X, y) 4- 1262(X, y) 4- 136,(X, 9) 4- 14&(X, y). (17) 

In  analogy with (8) we write 

gi N bi(T)/Pg (i = 1,2,3,4) .  

Substituting into (16) and multiplying on the left by li we obtain 

- hi(li. Ali) y-qi b; = y-(%-2) 1 4 .  X, for i = 1,2,4,  (18) 

and (n- 2) P.C(l3y-qsb3+l4y-q4b4) - (F.  B13)q3y+a+lb3 = y-(n-2)13.X1. (19) 

The matching condition then gives q1 = q2 = q4 = n - 2 and q3 = n - 3. Hence 
the bi are all determined by ( lg )  and (19). In  particular 

which determines the leading term of v,. By proceeding in this manner we may 
systematically obtain the perturbation solutions of v to all orders. The calcula- 
tion of second-order supersonic flow has already been considered by Van Dyke 
(1952). 

We have shown that in the wave region, i.e. r fixed and y large, the solution 
to the inviscid problem has the form 

~ 

vo + EO( 1) + e20 (y) + . . . in two dimensions, (20) 

(21) = {vo + eO(y-4) + e20(1) + . . , in three dimensions, 

which indicates that linear inviscid theory fails when y 2 O( l/e) in two dimen- 
sions and y 2 O( 1/e2) in three dimensions. 

We now turn to the calculation of v, in the wake, i.e. for x +- co and y fixed. 
In  computing v, in the wave region we made use of the fact that the first-order 
wake solution (7) vanishes outside the wake, so that in fact X(v,) - X(Pg(7)/ 
yW-2)). In  order to obtain v, in the wake we must first examine the wave portion 
of v, in the wake, i.e. we consider g for x --f co with y fixed. However, this function 
satisfies the wave equation and its properties in two and three dimensions are 
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well known (see e.g. Ward 1955, pp. 45ff). In  two dimensions9 clearly is zero in 
this limit and in three dimensions simple estimates shows that g is of O ( r 3 )  in 
this limit. Therefore, for the wake, we can write 

x(vi> = x(llgi(y) +12g2(?/) + (n-2) o(x-3))* 
A direct calculation then shows that 

From this it follows that no secularity appears in the inviscid analysis of the wake. 
However, including dissipation alters the situation, as we shall see in the next 
section. 

Dissipative effects 

Considering the wake first, we include the dissipative term Y in (16). Then, multi- 
plying from the left by 1192, we find that 

11* 2 . A av2/ax N 11.2 . Y ( VJ . 
Since the right-hand side is a function of y only, according to (7), we find that the 
particular solution for v2 is 

which indicates secularity. 
Pinally we consider the shock zone. We first approximate the leading portion 

of a thin sharp body by a wedge or cone, depending on the number of dimensions. 
The shock leaving the leading part is of a constant strength and is praportional 
to the angle of the wedge or cone which is of O(E).  According to weak-shock-wave 
theory, t h e  shock thickness 6 is given by 

vp = O(xv1) as x - f o o ,  

6 = O(P/~Po~o) ,  (22) 

where ,u is the viscoeity, po is the undisturbed density and a, the speed of 
sound. 

On the other hand, a linear viscous analysis of the same problem (Chong & 
Sirovich 1970) yields a shock thickness 6, given by 

6, = O((PY/Poao)9. 

Thus linear theory fails a t  a distance y, where 6, becomes as large as 6 or 

Y/d ' 0(1/4- (23) 

4. Nonlinear description 
To overcome the difficulty encountered because of the breakdown of linear 

theory at large distances, we employ the method of multiple scales (Cole 1968). 
This method attempts to overcome the appearance of secularities by the explicit 
introduction of the slow variation that is suggested by non-uniform expansions 
such as (20) and (21). We first expand our solution in the form 

9 = VO+€V1+1)(€) v2+ ..., (24) 
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where p(s )  = O ( E )  is not yet known, and let 
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vi = v&,,y,;x,,y,) (i = 1 9 %  ...), 

where xo and yo are the fast scales (formerly x and y) and x, and yl are slow scales 
defined by 

with v -f 0 as e --f 0; ~ ( e )  is to be determined. The region olinterest is now specified 
by the condition T~ = yo - hixo, x1 and y1 all fixed and E -+ 0. 

From the previous section v1 is known to have the form given by (7), (14) and 
(15), i.e. in the Mach region 

x1 = v(+, y1 = W Y ,  (25) 

As is indicated the slow dependence on x1 and y1 has not yet been determined. 
Proceeding to the next order we obtain, 

v ~ + E ~ X ( V ~ ) + E Y ( V ~ ) .  (28) 

Both nonlinear and dissipative terms are included since, as we have seen, both 
can lead to secularities. Multiplying (28) on the left by li gives 

n-2  1 

Yo P 
li.Av2+--lli.Cv2 = -1 i .  vl+e2X+EY). 

(29) 

We use the added latitude gained by introducing ‘slow variables’ to force the 
right-hand side of (29) to vanish for x2 +y2 -+ co. Equivalently we require 

= 0 (i = 1,2,3,4). (30) 

I n  (30), 7,, x1 and yl are held fixed and T~ equals yo - h3x0 in the Mach region and 
yo in the wake. 

Mach zone: 70 = yo - h3x0 = yo - xo/(M2 - 1)t 

Substituting (26) into (30) results in v = en-l and from thisp = en. The dissipa- 
tive term SY is of O(R-l ~ v * ( ~ - ~ ) ) ,  where R is the Reynolds number based on body 
length. Since R is large this term appears to be small; however, in a shock region 
the shock thickness and not the body length is the appropriate scaling. If (22 )  
is used for this purpose the dissipative term BY = O ( E ~ R & ~ - ~ ) )  and the nonlinear 
term s2X = O ( E ~ R V ~ - ~ ) .  For n = 2 viscous and nonlinear terms are of the same 
order, while in three dimensions the viscous term dominates. The latter conch - 
sion arises from the failure to consider the decay of shock strength with distance; 
discussion of this point is deferred to the next section. Rather than redetermining 
Y and hence finding the appropriate expansion in the shock regions, we attempt a 
uniform description, i.e. all leading terms in passing through the inviscid and 
dissipative zones are retained. 
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Returning to (30), with i = 3 we find 

with 

(see I, 0 4 for definitions of [,[ and y ). Here we have set r1 = y1 -A%,, which shows 
that the r1 dependence can be suppressed. 

At this point we may regard 6 as having been only a formally small parameter 
and eliminate it by setting it equal to one. This gives 

For n = 2, equation (32) reduces to the Burgers equation (Burgers 1948) found in 
I and for which an explicit solution exists as indicated there. $or n = 3, no 
general exact solution has been found, although g = G(r/yi)  with G such that 
- &{G’ + cGC‘ = G”/R, 5 = r /y ,  is a similarity solution. We shall see that this 
does not correspond to the physical solution. An alternative to (32) is 

Lighthill (1956; see equation 186) derives (33) in a different way, but does not 
focus attention on the form of spatially dependent ‘diffusivity’. Note that our 
demonstration shows the diffusivity to diverge as y --f 00, which implies that linear 
theory takes over in this limit. This is made more precise in the next section. 

Inviscid limit 

The inviscid limit is effectively obtained by setting R = 00 in (33), resulting in the 

as so-called. Hopf equation: -+cgas - 
ar/ a- O.  (34)’ 

For flow past a finite body, the zone of disturbance created by the body is con- 
tained between the head and tail shocks and we refer to this as the wave region. 

In  two dimensions the wave region at large &stances spreads as O((ey)t), 
whereas according to our transformation, equation (33), the analogous three- 
dimensional spread is of O(&& (Lighthill 1956; Whitham 1952). 

The theory of Whitham (1950, 1952, 1956) can be shown to correspond to the 
inviscid limit of our analysis. Whitham represents his solution in the form 

24 = - F ( l y ( N * -  l)t ( 2 y ) 4 ( 9  (35)s 

where g is the characteristic, delined by 
A ( ~ + 1 ) ~ 4  

29(M2- I)%‘ 
x = (M2 - l)+ y - EF(5) t p - 2 )  + c, Ic = 

By differentiating (35) along characteristics one can easily show that (35) satisfies 
(34) under appropriate normalization. 
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Solution Two-dimensions Three dimensions 

Linear inviscid & €y-* 
Nonlinear inviscid : head shock eY-i el-* 

Linearized dissipative (Sirovich @Y)-a W Y )  -t 
(Lighthill 1956; Whitham 1952) 

1968; Chong & Sirovich 1970; 
Salath6 1969) 

TABLE 1. Fall-off in strength of supersonic flow 

Wake: r0 = yo 

To complete the analysis of the flow we turn to  the wake region and consider (30) 
for li = P, 12. Since 

the problem is linear. Furthermore, from the matching condition we have 

P.X(V1) = 12.X(V1) z 0 

Y = O(l/R), 

i.e. the stretching v involves just the viscous scale. (A similar effect appears on 
carrying the detailed stretching in the shock layers.) The resulting equations are 
(after removing the scaling) 

-gz-- -+-- g2 = 0. 
ax a yu .E la2 a g  n - 2 a )  y ay 

Therefore in addition to linearity, we also have the decoupling of the viscous 
and heat conduction wakes. Also, as may be verified, the former is a vorticity 
and the latter an entropy wake. These wakes are treated in the linear cases (Siro- 
vich 1968; Chong & Sirovich 1970) and further discussionisnot deemednecessary. 

5. Behaviour in the wave region 
Table 1 contains a summary of the fall-off in strength of various solutions in 

the wave zone. 
The first line of table 1 contains well-known results which follow from simple 

acoustic theory. The second line shows the effect of nonlinearity as is felt at a head 
shock, and the third line contains results from linearized dissipative flow. In two 
dimensions, dissipation and nonlinearity are equally effective and both effects 
must be given equal weight, a fact already manifested in the Burgers equa,tion 
which describes two-dimensional supersonic flow. On the other hand, in the three- 
dimensional case, nonlinearity becomes less effective with distance since the 
dissipafive mechanism becomes the strongest source of decay. From this we 
conclude that in three dimensions the linearized dissipative equations take over 
and describe the flow a t  large distances. Or referring to (33)) the nonlinear term 
may indeed be neglected in the limit y --f 00. This linear far field is treated by 
Salath6 (1969) and Chong & Sirovich (1970). 
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Linear dissipative 
in three dimensions 

Mach zone 

Wake I I .-/- 

'\ -Linear dissipative 

FIGURE 1. Various regions for supersonic flow past a body. 

Figure 1 summarizes the theories which apply in the various portions of the 
flow field around a thin body of thickness ratio E. Only the field in the upper half 
of some meridian plane in three dimensions or the upper half-plane in two dimen- 
sions is shown. Dissipative regions are designated by cross-hatching and the 
inviscid regions are simply hatched. The boundary layer is not sketched. The line 
of demarcation between the linear and nonlinear inviscid regions is a t  I/€ and 1/e2 
for two and three dimensions, respectively, while the width of the inviscid wave 
zone grows as O(s*yB) and O(dy$) in two and three dimensions, respectively. 
The extent of the linear viscous shock zone by (22) and (23) is simply of O( (s2B)-'). 
Thereafter the shock zone becomes nonlinear and dissipative. 

To estimate nonlinear shock thickness we return to (22), which expresses the 
width of a weak shock in terms of its strength. From table 1 the strength is pro- 
portional to ~y+, and on substituting this into (22) we find that the thickness 
is given by 

S/L z yin/cR. (36) 

The shock thickness in two dimensions grows a t  the same rate as the width of 
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the wave zone, but in three dimensions the shock thicknessultimately completely 
engulfs the wave zone. 

The above discussion indicates that for two dimensions the nonlinear inviscid 
wave zone, of width of O(dy*), is enclosed by two much narrower shock regions 
of width of O(yB/eR). In  I an explicit; representation is found for the flow field 
past an arbitrary body and with some noteworthy exceptions the qualitative 
description given above is correct. Specifically a t  extreme distances, dissipative 
effects totally invade the flow. To see this we consider, for simplicity, flow past a 
thin diamond-shaped profile. Then from I we have in Che limit. y +- 00, y > R, the 
expression 

(37) 

Over most of the range of variation of y the first term of the denominator of (37) 
is small and the Reynolds-number dependence is lost. This is precisely the linear 
profile predicted by the N-wave solution. But for y/R sufficiently large, the first 
term of the denominator is no longer negligible and in fact can dominate. From 
this it follows that the solution is everywhere structured by viscosity. The 
distances at  which this occurrs are so extreme as to preclude any practical signifi- 
cance. It does caution us in regarding the flow as having a clearly separated dis- 
sipative shock zone. 

This idea is more important in the three-dimensional case since our estimates 
show that the dissipative zone eventually occupies completely the disturbance 
region. This leads to the idea of a critical distance beyond which inviscid and 
dissipative regions cannot be separated. If the inviscid estimate of the wave 
zone is denoted by d then certainly when 8/d = O( I) the two zones are completely 
intertwined. Hence as a criterion for the critical distance we take that distance 
a t  which 

8/d = O(S) .  (38) 

Alternatively, inviscid theory can be regarded as giving the position of the 
shock wave. From this one may construct a viscous shock wave based on the shock 
strength and location given by inviscid theory. Once this shock thickness becomes 
sufficiently large, the inviscid estimate of shock strength becomes erroneous. 
This argument also leads to (38). If we denote the critical distance by Y and use 
&$ for d / L  then (36) and (38) give 

For example, taking 8 = 10-1 and R = lo5 gives us 105 body lengths as the critical 
distance. It should also be noted that since the Reynolds number decreases with 
altitude the effect of dissipation is enhanced. 

Lastly we also give an estimate for the onset of linear dissipative flow in three 
dimensions. Referring to (32) we wish to find at what distance the dissipative 
term is large compared with the convective term. Since the wave region grows 
as €By3 we can estimate that a/& = O(e-h~-*). Using this in (32) we obtain y > dR 

Y = 0 ( ~ 5 ~ 2 ) .  



Nonlinear effects in steady supersonic dissipative gasdynamics. Part 2 63 

as the criterion for the onset of the linear dissipakive regime. Since an N-wave is 
linear in its interior the last estimate is only valid if it is greater than Y .  Therefore 
the linear regime applies for y 3 max [ e R ,  @R2]. 
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Naval Research under Contract NONR 562 (39) with Brown University. 

REFERENCES 

BURGERS, J. M. 1948 A mathematical model illustrating the theory of turbulence. Adv. 
Appl. Mech. 1, 171. 

CHONG, T.H. & SIROVICH, L. 1970 On the structure of three-dimensional linearized 
supersonic and hypersonic flows. Phys. Fluids, 13, 1990. 

CHONG, T. H. & SIROVICH, L. 1971 Non-linear effects in steady supersonic dissipative 
gasdynamics. Part 1. Two-dimensional flow. J .  Fluid Mech. 50, 161. 

COLE, J. D. 1968 Perturbatim Methods in Applied Mathematics. Waltham, Mass. : 
Blaisdell. 

LIGHTHILL, M. J. 1956 Viscosity effects in sound waves of finite amplitude. Survep in 
Mechanics (ed. G .  K. Batchelor & R. M. Davies). Cambridge University Press. 

RYZHOV, 0. S. 1965 Asymptotic pattern of flow past bodies of revolution in a sonic 
stream of viscous and heat-conducting gas. Prikl. Math. Mech. 29, 1004. 

RYZHOV, 0. S. & SHEFTER, G. M. 1964 On the effect of viscosity and thermal conductivity 
on the structure of compressible flows. Prikl. Math. Mech. 28, 996. 

S A L A ~ ,  E. P. 1969 The fundamental matrix in three-dimensional dissipative gas- 
dynamics. J .  Fluid Mech. 39, 209. 

SIROVICH, L. 1968 Steady gasdynamic flows. Phys. Fluids, 11, 1424. 
SZANIAWSKI, A. 1968 The asymptotic structure of weak shock waves in flows over 

symmetrical bodies a t  Maoh number unity. Acta Mechunica, 5 ,  189. 
VAN DYKE, M. 1952 A study of second-order supersonic flow theory. N.A.C.A. Rep. 

no. 1081. 
WARD, G. N. 1955 Linearized Theory of Steady High-speed Plow. Cambridge University 

Press. 
WHITHAM, G. B. 1950 The behaviour of supersonic flow past a body of revolution, far 

from the axis. Proc. Roy. SOC. A 201, 89. 
WHITHAM, G. B. 1952 The flow pattern of a supersonic projectile. Comm. Pure Appl. 

Math. 5 ,  301. 
WHITHAM, G. B. 1966 On the propagation of weak shock waves. J .  Fluid Mech. 1, 

290. 




